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Abstract 

Increases in population as well as economic improvements in developing countries are 

generating a larger demand for animal protein products.  Current animal growth processes 

inherently, require the use of water in many forms throughout the growth cycle.  Water is the 

most important natural resource on earth to sustain life, and in many developing countries is a 

scarce resource that must be used wisely.  Studies have revealed that poultry growth can take 

place with less water consumption, when compared with other sources of animal protein (e.g. 

cattle, pork).  In this research, an evaporative Flow Blurring cooling system was considered as 

an alternative method for cooling in a full scale poultry (e.g., chicken) farm located near 

Fayetteville, Arkansas, USA. 

Flow Blurring is a very efficient pneumatic atomization process, currently used in 

evaporative cooling consumer products, chemistry instrumentation/analysis equipment, and in 

combustion investigations.  In this dissertation, the Flow Blurring cooling system was designed, 

manufactured, installed, and experimentally investigated.  A custom control system (i.e., controls 

logic) was developed to run the sequence of actions required during the operation.  Experimental 

results from the Flow Blurring cooling system were compared to an existing Cool-Pad 

evaporative system the current standard in the poultry industry. 

The implementation of this new evaporative cooling system resulted in a reduction of 

approximately 78% in water consumption (10,443 gallons) used for cooling, while the Flow 

Blurring cooling system and Cool-Pad systems were concurrently in operation.  The Flow 

Blurring cooling system maintained comparable and/or enhanced environmental conditions (i.e. 
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temperature and humidity).  Power consumption was higher by 13% when compared to the 

existing cooling system.  The results demonstrate the potential application of a Flow Blurring 

cooling system in the poultry agricultural field. 
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Chapter 1: Introduction 

Population and economic growth in developing countries are creating a global demand 

for food of animal origin (i.e. animal protein).  From the early 1970s to the mid-1990s, 

consumption of meat in developing countries grew by 70 million metric tons, whereas 

consumption in developed countries grew by only 26 million metric tons [1].  This consumption 

pattern and improved economies may provide indications of where animal protein intake can 

increase in developing countries.  Figure 1 illustrates this trend as described by Steinfeld [2] for 

developed and developing countries. 

 
Figure 1. Relationship between meat consumption and per capita income 2002 [2]. From  

       Livestock's long shadow: environmental issues and options, by Fao, R.L.E., et al., 2006,  

       Reprinted with permission. 
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One important aspect in most animal protein production process is the demanding use of 

water for animal hydration, environmental control, and sanitation.  As is well-documented, water 

is a limited resource with no substitute.  Life on planet earth depends on it.  Vast amounts of 

financial assets are spent searching for this valuable resource in other planets to prove the 

existence of life as we know it.  As water quantity and quality becomes scarce, mitigation 

strategies will need to be implemented.  People often look for a single answer to a problem; 

however many partial solutions can add up to a significant solution. 

As animal product demand increases, water usage increases proportionally.  Mekonnen 

and Hoekstra [3] reported the volume of water per ton of product (i.e. animal protein) for four 

different countries as well as global average (Table 1).  One can observe from Table 1 that the 

global weighted average use of water for chicken meat is about 72% that of pig meat (4325 

m3/ton vs. 5988 m3/ton) and 25% that of beef (4,325 m3/ton vs. 15,415 m3/ton).   

The dependency on water will be the focus of this research, especially how can we reduce 

the percentage of service water consumed during the animal protein production.  Service water 

consumption refers to the water used to clean the production site, wash the animals and carry out 

other services necessary to maintain the environment [3].  Within the service water category, this 

dissertation will concentrate on the consumption of water necessary to maintain an efficient 

growth environment.  This result must be achieved without affecting the three environmental 

variables required for an efficient protein production process, namely temperature, humidity, and 

ventilation.  
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Table 1. The Green, Blue and Grey water footprint of animal products for selected countries and 

the weighted global average (m3/ton) [3] 

 
• Notes: 

a. Blue water footprint refers to the volume of surface and ground water consumed as a result of the 

production of the product. 

b. Green water footprint refers to the rainwater consumed. 

c. Grey water footprint refers to the volume of freshwater that is required to assimilate the load of 

pollutants. 

d. From A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems, 

Mekonnen, M. and A. Hoekstra, 2012 Reprinted with permission. 

 

Poultry producers worldwide use ventilation and evaporative cooling as means to control 

the environment in poultry houses.  Ventilation is important to maintain air quality and 

temperature control within the poultry house.  Ventilation is usually broken down into [4]: 

a. Minimum ventilation – the purpose is to bring fresh air into the house and exhaust any 

stale air (to remove excess moisture and prevent the build-up of harmful gases), while 

maintaining the requisite in-house air temperature. 
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b. Intermediate ventilation – the aim of transitional ventilation is to remove the excess heat 

from the house when the house temperature increases above an ideal set point 

temperature. Transitional ventilation is a temperature driven process during which 

ventilation fans stop running on a cycle timer (minimum ventilation) and start running 

continuously for the temperature control. 

c. Tunnel Ventilation – tunnel ventilation should only be used when transitional ventilation 

is no longer capable of keeping the poultry comfortable (e.g. when the poultry show signs 

of being too hot). Tunnel ventilation is used in warm to hot weather and usually when the 

poultry are at least 5-6 weeks old.  

Ventilation alone is not enough to maintain a desired temperature in hot climates.  During 

hot weather periods, use of evaporative cooling is essential to sustain a comfortable environment 

for the animals.  Two main evaporative cooling systems have been used in the poultry industry, 

namely, cooling pads (e.g. Cool Cells) and fogging systems (i.e. water atomization). 

Cooling pads operate under the principle of dripping water down through a large porous 

surface, while air is flowing across the surface into the poultry house.  Figure 2 illustrates the air 

and water flow for an evaporative cooling pad system. 
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Figure 2. Air and water flow paths for an evaporative cooling pad system 

 

Maintenance of these systems is critical for proper operation.  When these systems are 

maintained properly, they can be effective.  Additionally, these systems reduce the risk of 

directly wetting the interior of the poultry house (e.g. litter). 

Fogging systems have been in operation for many years.  They operate in the principle of 

spraying water as small droplets in the fog range (less than 60 μm in diameter) in order to 

increase the water surface in contact with the air [5]. The small droplets are carried by the air 

stream in the environment (e.g. poultry houses, outdoor venues, and others) and evaporate by 

absorbing sensible heat from the air, resulting in a decrease in dry bulb temperature and an 

increase in air humidity (i.e. percent relative humidity or humidity ratio).  The majority of 

atomizers used today in animal cooling operate under the principle of hydraulic atomization.  

The primary parameters governing the mean droplet size in this type of atomization process are 
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liquid injection pressure, properties of the liquid (viscosity, density & surface tension), ambient 

gas (viscosity & density), and atomizer discharge orifice diameter.  Figure 3 illustrates the 

hydraulic atomization process.  Although these systems are effective in providing cooling under 

hot weather conditions, they have been plagued with inconsistent operation. 

 
Figure 3. (a) Illustrates the liquid jet breakup at liquid pressure higher than gas pressure; (b)  

     illustrates the liquid breakup at a much higher liquid pressure than the gas pressure. 

 

The main factors causing this unreliable operation are clogging, erosion of the exit orifice 

and liquid pump wear.  Clogging is mainly due the small size of the orifices ranging from 10.6 

µm to 25.4 µm (0.004 in to 0.010 in) and dissolved solids and/or water hardness [6].  These 

issues have been addressed by: 

a. Use of inline filters to remove non-dissolved solids equal to or larger than the orifice 

diameter 
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b. Use of reverse osmosis (RO) systems, to remove dissolved solids that can accumulate 

during stagnant system operation. 

Although these methods can be effective, the maintenance and implementation (i.e. 

operational and capital expenses respectively) of these solutions are challenging [7].  Erosion of 

relatively soft atomizer materials (e.g. polymers, brass, and stainless steel) is addressed using 

harder materials, such as synthetic sapphire and ruby orifices.  However, clogging persists as an 

undesirable feature, since the orifice size is still very small for proper operation of the 

atomization process.  

Therefore, the contents of this dissertation consist of experimental work of a poultry 

cooling method using Flow Blurring (FB) as the water atomization process to address the 

aforementioned limitations.  In Chapter 2, a detailed description of poultry cooling processes is 

presented.  An overview and literature review on the topics of poultry cooling via natural 

ventilation, forced ventilation, direct spray, indirect and direct evaporative cooling will be 

presented. 

The principles of operation of a FB atomizer are considered in Chapter 3.  The FB 

evaporative cooling is designed to meet the necessary requirements and resources available at the 

testing site.  Following Chapter 3, the test results of the current evaporative cooling system are 

compared against the FB evaporative cooling design in Chapter 4. 

Finally, general conclusions about the FBcooling system, recommendations for future 

research and additional applications in the poultry industry are presented in Chapter 5. 
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Chapter 2: Poultry Environmental Controls 

 

2.1. Poultry Environmental and Production Controls 

Environment control of poultry is a key characteristic of their production growth cycle.  

Variables like body temperature, feed consumption, growth rate, feed conversion, and mortality 

depend on other characteristics, including house environmental conditions (e.g. temperature, 

ventilation, and humidity) [8].  Poultry do not sweat, meaning they must release heat to the 

environment via sensible and latent heat losses.  Body sensible heat loss must be dissipated to the 

surroundings, mainly through conduction, radiation, and convection heat transfer.  Latent heat 

loss occurs through evaporation of moisture from their respiratory system, as liquid is converted 

to a gas thru the evaporation process [9].  This latter heat dissipation mechanism is influenced by 

the humidity in the environment, as discussed later in this chapter. 

Havestein [10] documented a significant industry progression in faster growing meat-type 

chickens.  He compared 1957 broilers with 1991 and 2001 broilers (broiler is the name used in 

the industry for meat type chicken).  However, this growth coincided with poorer development of 

cardiovascular and respiratory systems, contributing to the complications broilers have in 

managing heat stress.  This growth efficiency increase in combination with animal genetics and 

the potential of global climate change, in turn opening the door for new ways to control the 

poultry house environment. 

2.1.1. Temperature 

Temperature (e.g. dry bulb and wet bulb temperatures) is important in the poultry growth 

cycle, since body heat rejection is a function of this variable, as noted.  There are different 
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temperatures of importance in poultry production process.  Poultry animals are homeothermic, 

meaning they produce and dissipate heat to maintain a relatively constant temperature. Adult 

chickens body temperature varies between 105 oF and 107 oF [11]  Body temperature (TB) is a 

function of the poultry metabolism, and is of importance in all heat transfer processes.  Poultry 

house indoor temperature (TID) has an immediate impact on poultry, depending on how well it is 

monitored and controlled.  Anderson [8] documents the temperature that surrounds the poultry 

and their effects.  Table 2 shows the temperature range and their corresponding effects, as 

documented in [8].   

Table 2. Indoor air temperature and poultry heat stress effects [8]  

Indoor Air 

Temperature 

Range, oC (oF) 

 

Poultry Heat Stress Effect 

12.8 – 23.9 (55 - 75) The temperature range in which no metabolic alteration is needed to maintain 

its body temperature. 

18.3 – 23.9 (65 - 75) Best temperature range. 

23.9 – 29.4 (75 - 85) A small reduction in feed intake can be anticipated. 

29.4 – 32.2 (85 - 90) Feed intake decreases.  Cooling processes should be started before reaching 

these temperatures. 

32.2 – 35 (90 - 95) Feed intake keeps dropping.  Heat prostration especially among heavier 

poultry is possible.  Cooling processes must be implemented 

35 – 37.7 (95 - 100) Emergency measures may be needed.  Feed intake is harshly reduced.  Water 

intake is really high.  

Over 37.7 (100) Emergency actions are required to increase poultry cooling.  Poultry 

subsistence is the main concern at these temperatures. 

 

The environmental outdoor temperature (TOD) is central, since it influences heat transfer into the 

poultry house.  It also determines when the direct or indirect evaporative cooling system may be 

utilized effectively.  Evaporative cooling systems works best at relatively low outdoor air 

humidity, which tend to occur during high incidental TOD. 

2.1.2. Moisture (Relative Humidity) 

The moisture content in the outdoor and indoor air is important in maintaining the proper 

TB, since the latent heat rejection depends on this humidity factor.  Moisture content can be 
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measured in terms of percent relative humidity or humidity ratio.  Relative humidity is defined as 

the ratio of the partial pressure of water vapor in an air sample, to the partial pressure of 

saturated moist air sample at the same temperature and pressure [12] 

,

v

g T P

p

p
        (1) 

where  is the relative humidity, pv is the partial pressure of water vapor at the environment dry-

bulb temperature, and pg represents the saturation pressure of water vapor in the absence of air at 

the given dry-temperature.  This pressure pg is a function only of temperature, and differs slightly 

from the vapor pressure of water in saturated moist air.  The humidity ratio, on the other hand, is 

defined as the ratio of the mass of the water vapor to the mass of the dry air [12] 

v

a

m

m
         (2) 

where  is the humidity ratio, mv is the mass of water vapor, and ma is the mass of dry air.  As 

stated in Section 2.1, the latent heat loss occurs through evaporation of moisture off the poultry 

respiratory system (e.g. panting process).  This evaporation process is dependent on the amount 

of moisture the air entering the respiratory system can absorb.  Air inhaled at a relative humidity 

of 90% can retain less moisture than air with a relative humidity of 60%, therefore less latent 

heat rejection can be achieved.  Consequently, maintaining a humidity between 40% and 65% is 

beneficial for poultry in a heat stress scenario [13] [14]. 

2.1.3. Ventilation   

Ventilation of the poultry growth cycle is imperative for two main reasons: (1) the 

addition and distribution of fresh air to the house/poultry and (2) the modulation of air speed in 

the poultry house.  The need for fresh air comes from the generation of organic and inorganic 
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byproducts, including micro-organisms and harmful gases such as carbon dioxide, nitrous 

oxides, methane, ammonia and hydrogen sulfide [15].  The modulation of air speed is required 

for temperature and humidity control.  Several methods of ventilation have been utilized to 

achieve the requirements described above. 

a. Natural ventilation – This method relies extensively on natural air motion.  To 

accomplish this process, poultry houses incorporate side curtains.  Curtains allow for 

height adjustment, and provide increase or decrease of airflow area.  The house curtains 

are positioned away from obstructions (i.e. proximity to other buildings), and in the 

direction of natural air currents. Figure 4 illustrates a naturally ventilated house.  Another 

feature is the addition of circulation fans to promote turbulent air flow around the poultry. 

 
 

Figure 4. Naturally ventilated poultry house 
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b. Mechanical ventilation – This method relies on mechanical systems to promote the 

motion of air into or out of the house.  Forced and tunnel ventilation are two processes 

that can be used to accomplish this outcome.  Forced ventilation, uses fans to push fresh 

air into the house, creating a positive static pressure.  Air moves out through exhaust 

vents.  Figure 5 illustrates a forced ventilation system. 

 
Figure 5. Fans push fresh air into the house generating positive pressure 

 

Tunnel ventilation is another method of mechanical ventilation, and is the preferred 

ventilation method in the poultry industry today.  Its effects were studied decades ago by Drury 

[16], when he noticed an improvement in poultry weight gain in conjunction with an increase in 

ventilation air velocity.  Additionally, Lott [18] demonstrated improvements in poultry weight 

gain and feed conversion with increased air velocity.  Lacy and Czarick [17] reported similar 

results in tunnel versus cross-ventilated houses.  Timmons and Hillman [19] observed that the 

sensible and latent heat losses of poultry increase with air velocity.  Simmons, Lott, and Miles 

[20] observed that this air velocity increase was more effective later in the growth process (5-6 

weeks old), rather than earlier in the process (3-4 weeks old).  Figure 6 illustrates a tunnel 

ventilation system. 



www.manaraa.com

13 

 

 
Figure 6. Exhaust fans remove processed air from the house generating negative pressure 

 

2.1.4. Power Consumption 

Although both ventilation systems discussed in Section 2.1.3 make use of fans to promote 

airflow circulation, it is obvious that in terms of power consumption, natural ventilation (NV) is 

more efficient than the mechanical ventilation (MV) design.  This is due to the fans in the NV 

system working against less flow resistance, as compared to the MV system.  On the other hand, 

MV systems ideally require a sealed and rigid structure to ensure proper operation.  This 

characteristic allows the addition of better insulation systems to prevent the heat gain or loss 

during summer and winter seasons, respectively.  In the winter, this insulation system can reduce 

power consumption for the heating equipment during the poultry’s initial growth process, when 

the poultry lack feathers to retain the body heat.  In the summer, the insulation helps reduce the 

capacity of alternate cooling systems (e.g. cool-cells and water spray systems) 

2.2. Present Cooling Methods 

As presented in Section 2.1.3, tunnel ventilation is currently the preferred cooling method 

in the poultry industry, since it accomplishes many important aspects of the growth cycle at the 

lowest possible cost.  However, this process has its limitations as the outdoor temperature 
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reaches the range of 32.2 oC – 35 oC (90 oF – 95 oF) as seen in Table 2.  Supplemental cooling 

can be achieved by making use of an evaporative cooling process.  Evaporative cooling is a 

process viable in hot climates with relatively low humidity, although it has also been reported the 

application of these processes in high humidity and temperature environments [21].  The process 

takes place when non-saturated air is in contact with water.  The water will change phase from 

liquid to vapor, by transferring the heat from the surrounding air.  The air temperature drops due 

to the loss of heat, while absorbing the vaporized water in the process.  This process can occur 

until the air is completely saturated with water (e.g.  (relative humidity) = 100%).  Figure 7 

illustrates the processes both schematically and on a psychrometric chart. 

 
Figure 7. Evaporative cooling processes (a) Cool-Cell equipment diagram, (b) spray (i.e. fogger)  

 equipment diagram, (c) psychrometric chart process representation. 

 

In Figure 7(a) water interacts with air via a large wetted surface to promote the contact 

area.  Figure 7(b) shows the water sprayed into the air.  Figure 7(c) illustrates the process 1-2 in a 

psychrometric chart, where a reduction in dry-bulb temperature occurs (T2 < T1), as the humidity 

ratio increases (2 > 1).  The maximum reduction in dry-bulb temperature is the difference 

between incoming dry- and wet-bulb temperatures.  When these two temperatures are equal, the 
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air reaches a 100% relative humidity, and the air cannot absorb more moisture.  Under these 

conditions the evaporative cooling process is ineffective.  Evaporative cooling effectiveness can 

then be defined as, 

1, 2,

1, 1,

DB DB

DB WB

T T

T T






      (3) 

where is the evaporative cooling effectiveness, T1,DB is the inlet air dry-bulb temperature, T2,DB 

is the outlet air dry-bulb temperature and T1,WB is the inlet air wet-bulb temperature.  

Theoretically this effectiveness shall be less than 100%, although these systems can achieve 

effectiveness between 85% and 95% [22].  Evaporative cooling can be classified into direct and 

indirect evaporative (DEV and IEV) cooling.  Amer, Boukhanouf, and Ibrahim [23] published a 

detailed review of both DEV and IEV processes, categorizing passive systems that operate 

naturally with zero power consumption and electrically powered active systems. 

2.2.1. Direct Evaporative Cooling Methods 

Poultry houses make use of DEV systems, since they are less complex and, simpler to 

operate.  Two DEV’s have been used in the poultry industry: cool-cells and fogging systems.  

Cool-cells, as depicted in Figure 7(a), require a contact media of large surface area to increase 

the interaction between the incoming air and the water.  Currently, these are the preferred DEV 

system in the poultry industry, since they can provide cooling while maintaining the process 

water in a confined space.  This confinement also limits water contact with electrical equipment 

and the floor litter (i.e. bedding used in poultry house).   

Fogging systems, as they are known in the poultry industry are a type of hydraulic 

atomization process.  This system has been studied in detail for green house cooling and 

humidity control applications [5, 24, 25].  The use of fogging systems for poultry cooling dates 

back to the1940’s [26].  Their use has declined due to issues described in Chapter 1, and has 
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been replaced with the more approachable cool-cell.  One key aspect to point out, is that in 

almost all the reviewed literature, cooling is correlated to water flow (i.e. quantity of water 

dispersion), but very few correlations were found in the droplet size of the atomized water (i.e. 

quality of water dispersion).  Most of the fogging systems in the industry utilized for cooling, 

humidification, dust and odor suppression, and insect control are based on hydraulic atomization 

at low, medium, or high pressures.  Low pressure systems operate at city water pressure within 

3.45 to 5.52 bar (50 to 80 psi).  These systems produce a relatively large droplet size of 

approximately 60-50 m.  Medium pressure systems operate at pressures within 6.9 to 13.8 bar 

(100 to 200 psi).  These systems produce a relatively smaller droplet size of approximately 43-30 

m.  High pressure systems operate at pressures within 55.2 to 82.8 bar (800 to 1200 psi).  These 

systems produce small droplet size of approximately 15-12 m.  These Saunter Mean Diameter  

(SMD) droplet sizes are estimated using the correlation shown in equation 4, and  developed by 

Elkotb [27], 

0.25 0.25 0.25 0.5 0.25 6(2.25 )10L L L ASMD m P         (4) 

where, SMD is the Sauter Mean Diameter in m,  is the liquid surface tension in N/m, lm  is the 

mass flowrate in kg/s, PL is the liquid pressure drop across the orifice in m, and A is the gas 

density in kg/m3. 

Pneumatic atomization, is a viable option for a poultry house fogging system.  However 

power consumption of existing pneumatic atomizers are higher than hydraulic atomizers [28], 

under the same liquid flowrate and droplet size parameters.  In the literature review, no research 

was found where pneumatic atomizers were implemented as a poultry house cooling system, 

especially Flow Blurring. 
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2.2.2. Indirect Evaporative Cooling Methods 

As the name indicates, indirect evaporative (IEV) cooling separates the conditioned air 

from the water evaporation process.  The main advantage of this design is the capability for 

temperature reduction without an increase in humidity.  This is primarily accomplished with the 

implementation of a heat exchanger.  One side of the heat exchanger uses a direct evaporative 

system to cool outside air (i.e. heat sink), while outside air is cooled without an increase in 

humidity in the other circuit.  Figure 8 illustrates an IEV cooling system, with the corresponding 

psychrometric diagram. 

 
Figure 8. Indirect evaporative cooling processes (a) direct evaporative system/heat exchanger  

   equipment diagram, (b) psychrometric chart process representation. 

 

Although this system can produce the ideal scenario of lower temperature/humidity, it is not a 

commonly used equipment component in a poultry house.  The most probable reason for its 

exclusion is the cost of the heat exchanger, as it must be large, in order to handle the increased 

amount of fresh air required for the growth cycle. 



www.manaraa.com

18 

 

2.3. Poultry House Cooling Load 

As discussed, poultry house cooling is a necessary component in the poultry growth 

cycle, especially during hot weather conditions.  Another part of this process to be explored is 

the evolution of the poultry house itself.  Current industry house construction is very different, 

when compared to houses built decades ago [29].Some of today’s house size ranges from 40-ft 

by 400-ft , to 50-ft by 500-ft, contingent on the design poultry density per house.  Poultry density 

decision is mainly based on bird welfare, performance (i.e. feed conversion) and product quality.  

For example European Union poultry densities are based on the EU Welfare Directive (2007), 

with limits between 33 kg/m2 (6.7 lbm/ft2) to 42 kg/m2 (8.6 lbm/ft2) [30].  Poultry houses are 

designed with specific purposes based on the location and climate of the region or country.  

These may range among tropical, desert, temperate and cold regions [31].  Of particular interest 

is the southeast of the United States (e.g. Georgia, Alabama Arkansas, North Carolina and 

Mississippi), where this study’s research testing occurred.  This is one of the highest poultry 

producing areas in the United States [32], and is classified as a “Cfa” region under the Köpper-

Geiger climate classification.  This “Cfa” classification is assigned to regions with temperate 

climate, without dry season (i.e. no dry summer or winter) and having hot summers.  These 

climate regions must provide additional cooling during hot weather periods. 

The house designs vary from open-sided high rise cage with side curtains, which rely on 

natural air flow through the house, to low rise and well insulated forced ventilated buildings.  

New buildings make use of many home construction design features like dropped ceilings with 

insulation (typical R19), solid/insulated (typical R11) side walls, heating/cooling systems, 

hot/cold weather ventilation, LED lighting, electronics controllers, alarms and back-up 
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generators.  Every one of these systems is designed and implemented with one purpose in mind, 

to reduce energy costs and ensure efficient operation of the house. 

2.4. Poultry Heat Generation 

Poultry heat generation is of primary importance, as their heat generation is the largest 

load in the poultry house design [33].  As stated earlier, poultry are homeothermic, therefore they 

most release heat to, or absorb heat from the environment to maintain an even internal body 

temperature.  This released heat can be in the form of sensible and latent heat, via conduction, 

convection and radiation heat transfer.  The amount of heat can be influenced by nutrition, house 

design, growing practices, and genetics and has increased throughout the years [10].  Several 

studies have quantified this energy transfer under laboratory controlled conditions or field trials 

[14, 34-36].  Recently Fairchild and Czarick [33] published an average daily sensible and latent 

heat production of 16-35 and 28-51 Btu/hr/bird (4.7-10.2  and 8.2-14.9 W/bird) respectively.  

Assuming a target poultry weight of 6 lbm, the sensible and latent heat rejection can be estimated 

at 2.7-5.8 Btu/hr/lbm and 4.7-8.5 Btu/hr/lbm respectively. 

2.5. Flow Blurring® Background 

Flow Blurring® (FB) is an efficient atomization process that has its roots in the well 

know Flow Focusing atomization published by Gañan-Calvo [37].  The FB process was first 

reported by Gañan-Calvo in 2005 [38], and has been applied in many industries like fuel 

injection, analytical chemistry, pharmaceutical, biotechnology, cosmetics and agricultural.  In the 

agricultural field, FB has been applied in humidification of food producing plant (e.g. 

tomatoes).  Specific details of this atomization platform will be covered, in Chapter 3, where a 

full description and analysis will be presented. 
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Chapter 3: Design and Testing of a Flow Blurring Cooling System 

This chapter describes the methodology and design of a study, which examined the 

application of a Flow Blurring cooling system in a poultry house.  Research questions to guide 

the study are presented.  The description of the design methodology addresses the design of the 

cooling system, including the cooling load, Flow Blurring atomizer, controls logic and air/water 

distribution sub-systems.  The design was planned to deliver the necessary cooling to a 

production and testing poultry house facility located near Fayetteville, AR during the period of 

July-August of 2015.  The poultry house is representative of a real production facility and 

contained 20,000 birds at the start of the growth cycle. 

A list of research questions follows: 

a. Can a Flow Blurringatomization system achieve the necessary cooling and humidity 

control in a poultry house, and reduce the water consumption during this process? 

b. Can this systems allowed the growth of protein in locations where water is a prime 

resource? 

3.1. Poultry House Cooling Load 

The performance of the environmental control system in a poultry house depends on 

many variables.  The cooling load (i.e. heat gain) is one important variable in the selection and 

sizing of a cooling system.  The cooling load can be broken down as illustrated in Figure 9. 
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Figure 9. Poultry house cooling load variables 

 

A detailed description of the items in Figure 9 is as follows. 

3.1.1. Poultry House Location, Orientation and Construction 

The poultry houses for this research are part of the University of Arkansas–Division of 

Agriculture, located in Fayetteville, Arkansas.  As shown in Figure 10, house number 3 was used 

as the control group for the Environmental Control System (ECS) research.  The ECS for house 

number 4 was modified to incorporate the proposed Flow Blurring cooling system (FBCM).  

The shorter walls of the poultry houses have been oriented east-west, to reduce the solar 

irradiation exposure.  The houses were also separated by a distance of 23 meter (approximately 

75 ft), to prevent cross-house ventilation intrusion. 
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Figure 10. Aerial view and address of research facility site 

 

Table 3 illustrates the house dimensions and construction details that were used in the heat gain 

calculations. 

Table 3. Poultry house construction information 

 House 3 (Control Group) House 4 (FB Cooling System) 

Length 122 m (400 ft) 122 m (400 ft) 

Width 12.2 m (40 ft) 12.2 m (40 ft) 

Peak 3.30 m (10.8 ft) 3.23 m (10.6 ft) 

Side Wall 1.83 m (6 ft) 1.80 m (5.92 ft) 

Structure Wooden Trusses  Wooden Trusses 

Ceiling Insulation R-19 (19 ft2 oF hr /BTU) R-19 (19 ft2 oF hr /BTU) 

Side Wall Insulation R-11 (11 ft2 oF hr /BTU) R-11 (11 ft2 oF hr /BTU) 

Roof  Galvanized Corrugated Sheet 

metal   

Galvanized Corrugated Sheet 

metal   

Ventilated Attic Yes Yes 

Cool Cell per Side (North and 

South Sides) 

21.34 m x 1.22 m x 15.24 cm 

(70 ft x 4 ft x 6 in)  

21.34 m x 1.22 m x 15.24 cm 

(70 ft x 4 ft x 6 in) 

Electrical Capacity 60 A 60 A 

Bedding Rice Hulls/KD Pine Shavings Rice Hulls/KD Pine Shavings 
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Next item in the cooling load analysis is to establish the outdoor design conditions.  The 

ASHRAE Handbook of Fundamentals provides weather data for locations in the United States 

and worldwide [39].  The test site is located approximately at latitude 36.13 N and longitude 

94.31W.  The closest location to the test site, is Smith Field, Arkansas at a latitude 36.19 N and 

longitude 94.48W.  The cooling dry-bulb/mean coincident wet-bulb temperatures for this 

location at 2% are 90.2 oF and 74.2 oF respectively.  The 2% indicates that there is a probability 

of 2% that temperatures can be higher than these two values.  Using Equation (1) illustrated in 

section 2.1.2, at an altitude of 363.9 m (1194 ft) at the given temperature, we obtain an outdoor 

relative humidity of 47.6%.  This means that the outdoor air can absorb moisture added by the 

ECS, and reduce the temperature via the evaporative cooling process discussed in Chapter 2.   

The next step in the determination of the cooling load will be to calculate the conduction, 

convection and radiation heat transfer into the house.  Although extensive steady and unsteady 

state analysis have been performed in similar production environments [40-43], one important 

aspect must be emphasized.  The cooling load of a poultry house depends more on the number of 

birds in the process, rather than the cooling load on the building on its own.  The current research 

study used 20,000 birds, which a common lot size for the house size.  A similar size was used by 

Xin in 2001 [44].  Czarick [45] developed and provided an open source MS-Excel spreadsheet 

that can perform a simplified cooling load calculation.  A sample of the tool results with specific 

input data for the test site is shown in. Table 4. 
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Table 4. House 4 cooling load based on Czarick open source tool 

Design Conditions 

Inside Temperature (oF) 80   

Outside temperature (oF) 90.2   

Basic House Information 

House Length (ft) 400   

House Width (ft) 40   

Total Side wall Height (ft) 6   

Peak Height (ft) 10.58   

Open or Dropped Ceiling (o/d) d   

Poultry Information 

Number of birds 20000   

Heat Generated by bird 

(Btu's/hr per lbm) 

5.8a   

Bird weight (lbm) 6   

Side wall construction (for houses without curtains: Curtain height = 0) 

Curtain height 0   

Side wall height - excluding 

stem wall (ft) 

6   

Stem wall height 0   

R-values 

Ceiling R-value 19   

End wall R-Value 11   

Side wall R-value 11   

Stem wall  R-value 4   

 Area Heat Gain Percent 

Ceiling 16,414 39,048 5.2% 

End walls 663 615 0.1% 

Side walls 4,800 4,451 0.6% 

Stem walls 0 0 0.0% 

Lights  4,352 0.6% 

Birds  696,000 93.5% 

TOTAL 744,466 100% 
Notes: 

a. The heat generated 5.8 Btu/hr/lbm is taken from the sensible heat estimation in [33] 

 

 

As one can observe from Table 4 it is estimated that 93.5% of the cooling load (696,000 

Btu/hr) is accounted for by the number of birds in the house and only 6.5% (48,466 Btu/hr) is 

due to the conventional heat transfer modes into the house.  Therefore an extensive refinement of 

conduction, convention and radiation heat transfer loads will only have a minor effect on the 

total cooling load. 
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Next we will use the cooling load to estimate the amount of water required to be 

evaporated, to absorb the total cooling load of 744,466 Btu/hr.  For this we will make the 

assumption that the supply water temperature is approximately 18.3 C (65 oF). Therefore, 

making the density of water as 1000 kg/m3 (62.4 lbm/ft3) and enthalpy of vaporization as 2457.5 

kJ/kg (1056.5 Btu/lbm).  Equation 5 was used to calculate the supply water rate. 

660
10

fgh





 
   
 

     (5) 

where, is the volumetric flow rate in ml/min,  is cooling load in kW, hfg is the enthalpy of 

vaporization of water in kJ/kg and  is the density of water in kg/m3. Based on Equation (5) and 

the data above, the required water volumetric flowrate was found to be 5379 ml/min.  The initial 

ECS concept contained four FBCM, therefore each module will handle approximately 1345 

ml/min.  The water flow to each FB® atomizer is controlled by the use of a 3.85 LPH water 

dripper manufactured by Rivulis, Gvat, Israel.  As a result, the theoretical number of atomizers 

per module is 21.2, however to keep an even number of atomizers the system was designed to 

use 20. 

3.1.2. Poultry House Ventilation 

Both of the houses used during testing had the same ventilation schedule, to provide fresh 

air and cooling as needed.  Table 5 shows the ventilation schedule [46], which supplied power to 

a specific device based on a temperature difference between the actual indoor temperature and 

an ideal baseline temperature.  The baseline temperature (Ti), was supplied by the poultry house 

manager, and varies with the age of the birds [46].  Table 6 documents Ti and the corresponding 

range of relative humidity. 
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Table 5. Ventilation schedule for poultry houses 3 and 4 

Equipment Employed On T (oF) Off T (oF) 

Daily Ideal Temperature Ti  

Exhaust Fan 1 Ti +2 Ti +1 

Exhaust Fan 2 Ti +2 Ti +1 

Exhaust Fan 3 Ti +2 Ti +1 

Exhaust Fan 4 Ti +2 Ti +1 

Tunnel Fan 1 Ti +3 Ti +2 

Tunnel Fan 2 Ti +4 Ti +3 

Tunnel Fan 3 Ti +7.5 Ti +4.5 

Tunnel Fan 4 Ti +8 Ti +5 

Tunnel Fan 5 Ti +9 Ti +8 

Tunnel Fan 6 Ti +10 Ti +9 

Cool Pad or FB system Ti +11 Ti +10 

Tunnel Fan 7 Ti +12 Ti +11 

Tunnel Fan 8 Ti +13 Ti +12 

 

Table 6. Indoor design temperature for poultry houses 3 and 4  

 

Growth 

Cycle 

SAVOY Farm 

Indoor Design 

Temperature (Ti) 

 

Indoor Design 

Relative Humidity 

(Days) (oF) (%RH MIN) (%RH MAX) 

1 90 45 65 

3 90 45 65 

7 85 45 65 

14 83 45 65 

21 80 45 65 

28 72 45 65 

35 70 45 65 

42 68 45 65 

49 63 45 65 
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3.2. Development of a Flow Blurring Atomizer 

3.2.1. Flow Blurring Droplet Size Calculation 

According to Gañán-Calvo [38] a, Flow Blurring (FB) atomizer as illustrated in Figure 

11, can generate up to fifty times more surface area than any other pneumatic atomizer of the 

“plain jet type as documented by Lefebvre [4].  This FBatomizer configuration is obtained by 

locating a liquid conduit of internal diameter “D” concentric with an exit orifice having an equal 

diameter “D”, as illustrated in Figure 11.  The liquid conduit end is positioned at a distance “H” 

from the exit orifice.  A critical parameter indicated in [38] is the H/D ratio that must be equal to 

or less than 0.25 in order to operate in the FB regime.  The FB regime is considered as a 

polydisperse atomization mode.  In the case that H/D is higher than 0.25, the atomization falls 

under a monodisperse mode described by Gañán-Calvo as Flow Focusing (FF) [37]. 

It is important to note that at the ratio H/D = 0.25, the effective port area (EPA) created 

by the H dimension equals the port area of the exit orifice D, therefore  

EPA = DH      (6) 

 

 

Figure 11. Schematic of simple Flow Blurring geometry 
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The characteristic H/D ratio of less than or equal to 0.25 creates a micro-mixing zone 

without the use of passive or active design features in the atomizer [38].  This geometric 

parameter generates a backflow pattern and premix mechanism illustrated in Figure 12.  This 

pattern/mechanism allows the FBatomizer to produce a polydisperse spray with relatively high 

flowrates of up to 7.2 LPH (1.9 GPH). 

 

Figure 12. Flow Blurring back-flow mixing region in the liquid conduit 

 

The dimensionless mass median diameter (MMD) or d50 diameter, as is used in practice, 

is defined as 50% of the total volume of droplets smaller than this diameter [47].  It can be 

calculated as reported in [38], and shown below, 

MMD/ D       (7) 

where, D is the FB atomizer exit orifice in meters and  is defined by Equation 8 below. 
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0.6 1 1.2

1 2 3(1 )(1 )  (dimensionless)D DCWe C Oh C GLR        (8) 

In this equation C1, C2 and C3 are best-fit experimental constants with values of 0.42, 18 

and 1 respectively as reported in [38].  WeD is the Weber number, which is a dimensionless 

number that relates the inertial to surface tension forces at the interface between two different 

fluids 

2

2

g g

D

U D
We




       (9) 

where, g is the air density at the atomizer exit pressure drop in Pascal and supply air 

temperature (oC), Ug is the air exit velocity in meters per second based on the mass flow rate of 

air through the effective port area, D is the atomizer exit orifice in meters and  is the water 

surface tension in newton per meter. 

The Ohnesorge number (OhD), which is a dimensionless number relating the viscous 

forces to inertial and surface forces is defined per equation 10 

l
D

l l

Oh
D



 
        (10) 

where, l is the water viscosity in pascal-second, l is the density of water in kilogram/cubic 

meter, l is the water surface tension in newton per meter and D is the atomizer exit orifice in 

meters.  GLR is the gas to liquid mass flowrate ratio  

g

l

m
GLR

m
        (11) 

where, gm  is the mass flowrate of air and lm is the mass flowrate of water both in kilograms per 

second.  
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3.2.2. Flow Blurring Atomizer Design and Validation 

One important feature of the FB atomization process is that water never contacts the 

perimeter of the exit orifice (Figure 12), since the air surrounds the water flow through the exit 

orifice.  This feature eliminates or significantly reduces clogging, which is a problem with 

current spray evaporative cooling systems [48, 49].  The following specifications drove the FB 

atomizer development: 

Droplet mass median diameter shall be less than 20 m (target of 3 times smaller than 

current fogging systems). 

a. Atomizer design gas (i.e. air) pressure of less than 206.8 kPa (30 psi). 

b. Atomizer design liquid (i.e. water) flowrate shall be approximately 3.80 LPH (1 GPH). 

c. Minimize the gas (air consumption) due to limited electrical current capacity (60A per 

house) at the test site.   

d. Liquid (i.e. water) flow control must be achieved while the system operates at different 

supply pressures (variations in city water pressure). 

e. No tools shall be required to remove and replace the atomizer from the system. 

f. The atomizer must be easy to disassemble with the use of tools for the purpose of 

inspection and maintenance. 

g. Water and air connectors must be of standard metric sizes. 

h. All atomizer materials must be compatible with water and air, in addition to prevent 

corrosion in a broiler environment (i.e. moisture, dust, feathers, and low concentrations of 

ammonia). 

i. The atomizer shall allow the assembly of a network of atomizers in series and/or parallel 

configurations.
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Analysis of several design cases was performed, using the equations listed in the previous section and the specification above.  

Table 7 reflects the input parameters and Table 8 reflects the results for five different cases.  Case number five (5) met all the 

performance criteria and was used as the baseline design criteria. 

Table 7. FBatomizer design inputs and outputs parameters 

 

 

 

 

 

 

Table 8. Estimated droplet size results 
Case 

No. 

D 

(m) 

H 

m) 

Ql 

(ml/min) 

Qg 

(l/min) 

GLR 

(mg/ml) 

OhD dPadiabatic 

(Pa) 
g 

(kg/m3) 

U 

(m/s) 

WeD  MMD 

or d50 

(m) 

1 0.002 180 63.1 40 0.760 0.0026 258270.2 3.061 589.5 14570.5 0.0038 7.65 

2 0.002 180 63.1 38 0.722 0.0026 237389.7 2.814 559.9 12086.8 0.0044 8.87 

3 0.002 180 63.1 36 0.684 0.0026 216691.7 2.568 530.5 9902.1 0.0052 10.38 

4 0.002 180 63.1 35 0.665 0.0026 206413.7 2.447 515.8 8915.7 0.0056 11.28 

5 0.002 180 63.1 34 0.646 0.0026 196184.5 2.325 501.0 7996.58 0.0061 12.30 

 

Figure 13 shows an isometric and exploded views of the atomizer designed under the parameters of case number five (5) and the 

atomizer specifications. 

Gas Properties (SI Units): Air Liquid Properties (SI Units): 

Water 
 Constants 

Adiabatic constant   (air) 1.4 Surface Tension (N/m)   0.073 C1 0.42 

Gas Constant Rg (J/kg*K)  (air) 286 Density (kg/m3)  1000 C2 18 

Ambient Pressure (Pa)   101325 Viscosity (Pa*s)  0.001 C3 1 

Temperature of gas feed (K)   295     

Pressure at Discharge (Pa)  101325     
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(a) 

 

 

(b) 

Figure 13. (a) Isometric and (b) exploded view of FBatomizer
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The 2mm atomizer was designed using five main components: 

a. Atomizer Body – this component manufactured from stainless steel series (304SS or 

316SS), to prevent corrosion in the high humidity environment of the poultry house.  The 

body contains a 2 mm orifice, external flats for torque wrench positioning, 1/4” NPT 

thread port to accept the 12 mm push-to-connect air connector.  Internally it contains a 

step feature (see Appendix A), to control the “H” dimension and 7/8”-14 UNF internal 

threads to permit the assembly of the atomizer insert, into the atomizer body. 

b. Atomizer O-ring seal. – The seal, made out Buna-N material, designed for a static seal 

size 2-016 and based on specification ASTM D2000/SAE J200.  The material selected is 

well suited for operation in water with temperatures up to 250 oF 

c. Atomizer Insert – this component manufactured from stainless steel 300 series (304SS or 

316SS), to prevent corrosion in the high humidity environment of the poultry house.  The 

insert contains a 2mm water conduit, external flats for torque wrench positioning, 7/8”-14 

UNF external threads to permit the threading the atomizer insert into the atomizer body.  

A 1/8” NPT thread port to accept the push-to-connect water connector.  Externally, it 

contains a dimensioned feature (see Appendix A), to control the “H” dimension and a 

gland to accept the O-ring. 

d. Atomizer Air Supply Connector – this connector was selected to accept a 12 mm outside 

diameter (OD) x 10 mm inside diameter (ID) hose.  The ID of the hose was sized to 

handle a flow of 340 LPM and maintain a Mach number (Ma) under 0.2.  This design 

constrain allows the flow distribution analysis to remain in the incompressible flow 

regime.  In addition, the connector provides a “push to-connect” feature that allows the 

assembly of the atomizer into an air distribution network without tools. 
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e. Atomizer Water Supply Connector - this connector was selected to accept a 6 mm outside 

diameter (OD) x 4 mm inside diameter (ID) hose.  The connector also provides a “push 

to-connect” feature that allows the assembly of the atomizer into an air distribution 

network without tools. 

It is important to realize that the parameters in Table 8 (e.g. case 5) are nominal 

dimensions used in the design process; however, the design must consider manufacturing 

tolerances.  As stated in the droplet size calculation section, the “H” dimension is a key 

characteristic of the FB atomizer design.  In addition, the “H” dimension controls the gas flow 

effective port area (EPA).  For these reasons, the manufacturing drawings specify “basic” 

dimensions callouts for dimensions controlling the “H” dimension.  Appendix A shows detailed 

manufacturing drawings for the FB body and the FB insert.  The “basic” dimensions are 

enclosed by a rectangle per ANSY Y14.5, while the other dimensions are allowed to fluctuate 

within a specified tolerance.   

The water flow control was achieved with the use of a water dripper.  This device, used 

in the agricultural field for irrigation purposes, controls the water flow to 3.85 LPH 

(approximately 1 GPH) for inlet pressures between 70 and 350 kPa.  The manufacturer of the 

dripper is Rivulis in Gvat, Israel, and the model number is Supertif Black 3.85 ND.  Figure 14 

reflects the atomizer assembly as it was installed in the main atomizer sub-assembly of the FB 

evaporative cooling system.  Push to connect tees of 6mm and 12 mm were added to the 

assembly to allow the assembly of the atomizer in a parallel configuration. 
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Figure 14. Isometric view FB atomizer assembly 

 

Following the manufacturing of the atomizer components and assembly, the atomizer 

assembly went through a validation process.  The airflow across the FB atomizer EPA was 

measured and results are shown in Table 9.  No water was utilized in this testing protocol, to 

mimic an actual manufacturing environment.  This step eliminates the water removal process, 

increasing the number of atomizers manufactured per hour.  The results indicated a discrepancy 

between the theoretical airflow of 34 LPM and the actual atomizer airflow.  This occurrence can 

be explained by a lower than expected “H” value. 
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Table 9. FB atomizer airflow at 206.8 kPa (30 psig) 

FB Atomizer 

No. 

Airflow 

(LPM) 

1 20 

2 19 

3 19 

4 19 

5 17 

6 24 

7 23 

8 21 

9 20 

10 24 

11 20 

12 21 

13 23 

14 15 

15 20 

16 23 

17 21 

18 23 

19 19 

20 20 

 

It is important to understand the effect the H dimension manufacturing tolerances has on 

the droplet distribution for the FB atomizer.  Atomizers 10, 12 and 14 (highest, average and 

lowest flows respectively) as illustrated in Table 10, were tested using a SYMPATEC Laser 

Diffraction Analyzer Model HELOS/BR, Sympatec GmbH, Germany.  The pressure was varied 

from the nominal design pressure of 206.8 kPa (30psi) to 137.8 kPa (20 psi) to simulate a 

pressure reduction due to wear in the air delivery sub-system.  Table 10 and Figure 15 show a 

summary of the results with the corresponding tests conditions. Figure 16, Figure 17 and Figure 

18 show the droplet distribution for atomizer No. 10 at three different operating pressures, where 

d50 diameters of 13.77, 11.53 and 10.04 micro-meters can be identified respectively. 
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Table 10. H dimension evaluation results 

Test 

No. 

Atomizer1 

No. 

Relative 

“H” 

Dimension 

Water  

Flow 

(LPH) 

Gas 

Pressure 

(kPa) 

Droplet Size 

d50 

(m) 

Droplet 

Size2 SMD 

(m) 

1 10 Large 3.85 137.9 13.77 6.95 

2 12 Average 3.85 137.9 16.04 8.12 

3 14 Small 3.85 137.9 19.26 9.75 

       

4 10 Large 3.85 172.3 11.53 5.97 

5 12 Average 3.85 172.3 13.49 6.96 

6 14 Small 3.85 172.3 15.30 7.91 

       

7 10 Large 3.85 206.8 10.04 5.38 

8 12 Average 3.85 206.8 11.64 6.16 

9 14 Small 3.85 206.8 13.00 6.89 

 
Notes: a. 10: Higher flow, larger H, 12: Average flow, average H, 14: Lower flow, smaller H 

b. Sauter-Mean Diameter is listed for reference only. 

   

 

Figure 15. Droplet size distribution summary for FB atomizers 10, 12 and 14 
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Figure 16. Droplet distribution for FBatomizer no. 10 at Ql = 3.85 LPH, Pg = 137.9 kPa. 

      d50 = 13.77 m, SMD = 6.95 m 

 

 
Figure 17. Droplet distribution for FBatomizer no. 10 at Ql = 3.85 LPH, Pg = 172.3 kPa. 

      d50 = 11.53 m, SMD = 5.97 m 
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Figure 18. Droplet distribution for FBatomizer no. 10 at Ql = 3.85 LPH, Pg = 206.8 kPa. 

     d50 = 10.04 m, SMD = 5.38 m 

 

One can observe from Table 10 that for a constant H dimension, test cases 1, 4 and 7 

illustrate that an increase in pressure produces a decrease in the droplet size (d50 or SMD).  This 

behavior can be explained by an increase in the backflow mixing region as illustrated in Figure 

12.  This increase in the mixing region produces a larger number of smaller liquid ligaments that 

forms a larger number of droplet generation sites.  Additionally, when the H/D ratio is between 

0.25 (FB regime) and a critical H/D, the gas to liquid mixing region is reduced, due to a 

reduction in the EPA (effective port area).  This reduces the flow into the mixing region. 

3.3. Air and Water Distribution Sub-systems 

The operation of the FB atomizer requires a supply of air and water in a controlled 

manner.  For this reason, it was necessary to develop an air distribution sub-system (ADSS) and 

a water distribution sub-system (WDSS) to supply the required fluids to each atomizer.  The 

system design had one major constraint.  Both poultry houses had a maximum installed 

amperage of 60A.  This limited the available capacity for the installation of the proposed FB 
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cooling system, in particular the compressed air equipment.  The initial concept of the ADSS had 

one large compressor, however this created a concern, since a failure of this component could 

generate a catastrophic incident in the poultry growth cycle.  This concern was considered, and 

the final modular concept was implemented.  The modular design consisted of two separated 

FB cooling systems with independent compressors (only two modules were used, due the 

amperage limitation stated before).  To ensure the poultry would not be in danger, the current 

cool-cell system was kept in place, as a backup-system.  This measure was requested by the 

poultry facility, since the facility is an actual poultry process plant, not use for research only.  

The WDSS was not limited by the available amperage, since it utilized the existing water-well 

pump pressure.  Each module contains one compressor, one pressure regulator, twenty 2mm FB 

atomizer assemblies, polyurethane hoses, push to connect fittings, solenoid valves, pressure 

sensors, and mounting hardware.  Table 11provides the supplier and model number for the 

equipment. 

The compressor was selected based on case number 5 (Table 8), which requires 34 

LPM/atomizer (1.2 CFM/atomizer) for a total flow of 680 LPM (24 CFM) at a minimum 

pressure of 206.8 kPa (30 psig).  To achieve the water flow control through the atomizer, an 

agricultural dripper with a capacity of 3.85 LPH (approximately 1 GPH) was used.  This dripper 

provides a cost effective manner to control the flow to the atomizer, between a pressure ranges of 

0.7 bar to 3.5 bar (10.2 psig to 50.8 psig).  The FB cooling module (FBCM) concept is 

illustrated in Figure 19.  The automatic FBCM operation logic opens the air solenoid valve first.  

This step establishes the air in the system, and clears any debris at the FB atomizer discharge 

outlet.  The water valve shall open, approximately 30 seconds after the air solenoid is open.  The 

system continuously run until the desired temperature is attained or system reaches the maximum 
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limit of relative humidity.  These conditions (i.e. temperature and relative humidity) were set per 

Table 6 in Section 3.1.2, with the exception that the relative humidity upper limit was increased 

to 70%.  This is an increase of only 5% above the limit used at the farm, and allows the FBCM to 

work longer under this self-imposed constraint.  Although it is higher, Yahav [14] has published 

improvements in weight and feed conversion in Turkeys at this higher humidity level.  Upon 

reaching the desired temperature and/or humidity levels, the system shutdown sequence closes, 

the water solenoid valve first, stopping the flow of water to the atomizers.  Then, the air solenoid 

valve remain open for an additional minute.  This extra air flow ensures that moisture is 

eliminated at the FB atomizer outlet.  This is beneficial, in case the source of water contains a 

high concentration of minerals (i.e. hard water).  These minerals can be deposited with time, 

after standing water evaporates and cause a risk for the atomizer to clog. 

Table 11. FB cooling system equipment per module 

Item No. Description Supplier Part Number Quantity 

1 Compressor  Jenny Compressors  J5S-80V 1 

2 2mm FB Atomizer (Note 

4) 

Note 1 Note 1 20 

3 Air Pressure Regulator McMaster-Carr 4959K203 1 

4 Humidity/Temperature 

Transmitter 

Dwyer RHP-202B 3 

5 Brass Solenoid Valve, Buna-

N Diaphragm, Normally 

Closed, 1/2 NPT Female, 

24V AC 

 

McMaster-Carr 4711K733 2 
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Table 11 (Continued) 

6 12mm OD High-Pressure 

Nylon  

Tubing Opaque, 10 mm ID, 

12  

mm OD Hose 

McMaster-Carr 5140K825 Note 2 

7 High-Pressure Nylon 

Tubing, Opaque, 4 mm ID, 6 

mm OD 

McMaster-Carr 5140K234 Note 2 

8 Pressure Transducer McMaster-Carr 3196K5 1 

9 Controller DISTECH Controls EC-BOS-6 13 

10 Dripper Rivulis Supertif 

Black 3.85 

ND 

20 

Notes: 

1. This part was custom designed and manufactured for this project.  Refer to Figure 14 for components in the 

assembly 

2. This quantity is estimated to be 38.1 m (125 ft) 

3. The controller was shared by the two installed cooling modules 

4. Designed per Table 8, case 5 

 

 
Figure 19. FB cooling module schematic 
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Analysis of the theoretical model illustrated in Figure 19 was performed using 

PIPEFLOW Expert V7.3, to estimate the pressure drop of the conceptual system, and ensure the 

proposed air compressor had enough capacity (i.e. flow and power).  This commercially-

available software uses a compressible gas flow with general fundamental isothermal flow 

equation and Colebrook-White friction factor [50], 

2 22

1 2

11
1

2

316.23

2ln

p pA
w

ppfL

D p


 
  

    
 

    (12) 

 

where, 𝑤 is the mass flow rate, in kilograms per second, 𝐴 is the cross sectional area of pipe or 

orifice, in square meters, 1 is the specific volume of fluid, in cubic meters per kilogram (𝑎𝑡 𝑝1), 

𝑓 is the friction factor, 𝐿 is length of pipe, in meters, 𝐷 is the internal diameter of pipe, in meters 

and p is the pressure, in bar absolute.  The equation has been developed under the following 

assumptions, 

 Isothermal flow  

 No mechanical work done on or by the system 

 Steady state flow  

 Air behaves as an ideal gas (i.e. Z= 1) 

 The velocity of the gas may be represented by the average velocity at a conduit cross 

section  

 The friction factor is constant along the pipes 

 The pipes are straight and horizontal between end points
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Figure 20 shows the FBCM concept and PIPEFLOW model.  A solution was obtained, after several iterations where the 

pressure regulator was adjusted and the system met the required parameters. 

 

Figure 20. PIPEFLOW model design of FB cooling module
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Table 12. PIPEFLOW air distribution results 
Pipe 

No. 

Inner Diameter 

(mm) 

Length 

(m) 

Gas Flow 

(LPM) 

Exit Mach# Entry Pressure 

(bar.g) 

Exit Pressure 

(bar.g) 

1 14 1.83 685.8 0.07 8.62 2.24 

2 10 1.83 342.9 0.07 2.24 2.18 

3 8 0.05 35.5 0.03 2.18 0.00 

4 8 0.05 35.5 0.03 2.18 0.00 

5 10 0.05 35.4 0.01 2.18 2.18 

6 8 0.05 35.2 0.03 2.15 0.00 

7 10 0.05 35.0 0.01 2.15 2.15 

8 8 0.05 35.0 0.03 2.12 0.00 

9 10 0.05 34.8 0.01 2.12 2.12 

10 8 0.05 34.8 0.03 2.11 0.00 

11 10 0.05 34.6 0.01 2.11 2.11 

12 8 0.05 34.7 0.03 2.09 0.00 

13 10 1.83 342.9 0.07 2.24 2.18 

14 10 0.05 35.4 0.01 2.18 2.18 

15 10 0.05 34.4 0.01 2.09 2.09 

16 8 0.05 34.6 0.03 2.08 0.00 

17 10 0.05 34.3 0.01 2.08 2.08 

18 8 0.05 34.5 0.03 2.08 0.00 

19 10 0.05 34.3 0.01 2.08 2.08 

20 8 0.05 34.5 0.03 2.07 0.00 

21 10 0.05 34.2 0.01 2.07 2.07 

22 8 0.05 34.5 0.03 2.07 0.00 

23 10 0.05 34.2 0.01 2.07 2.07 

24 8 0.05 34.5 0.03 2.07 0.00 

25 10 0.05 34.0 0.01 2.07 2.07 

26 10 0.91 307.6 0.06 2.18 2.15 

27 10 0.91 272.7 0.06 2.15 2.12 

28 10 0.91 238.1 0.05 2.12 2.11 

29 10 0.91 203.7 0.04 2.11 2.09 

30 10 0.91 169.4 0.03 2.09 2.08 

31 10 0.91 135.3 0.03 2.08 2.08 

32 10 0.91 101.3 0.02 2.08 2.07 

33 10 0.91 67.4 0.01 2.07 2.07 

34 10 0.91 33.6 0.01 2.07 2.07 

35 8 0.05 35.2 0.03 2.15 0.00 

36 10 0.05 35.0 0.01 2.15 2.15 

37 8 0.05 35.0 0.03 2.12 0.00 

38 10 0.05 34.8 0.01 2.13 2.12 

39 10 0.05 34.6 0.01 2.11 2.11 

40 8 0.05 34.8 0.03 2.11 0.00 

41 8 0.05 34.7 0.03 2.09 0.00 

42 10 0.05 34.4 0.01 2.09 2.09 

43 8 0.05 34.6 0.03 2.09 0.00 

44 10 0.05 34.3 0.01 2.09 2.09 

45 8 0.05 34.5 0.03 2.08 0.00 

46 10 0.05 34.3 0.01 2.08 2.08 

47 8 0.05 34.5 0.03 2.08 0.00 

48 10 0.05 34.2 0.01 2.08 2.08 

49 8 0.05 34.5 0.03 2.07 0.00 

50 10 0.05 34.2 0.01 2.07 2.07 

51 8 0.05 34.5 0.03 2.07 0.00 

52 10 0.05 34.0 0.01 2.07 2.07 

53 10 0.91 307.6 0.06 2.18 2.15 

54 10 0.91 272.7 0.06 2.15 2.13 

55 10 0.91 238.1 0.05 2.13 2.11 

56 10 0.91 203.7 0.04 2.11 2.09 

57 10 0.91 169.4 0.03 2.09 2.09 

58 10 0.91 135.3 0.03 2.09 2.08 

59 10 0.91 101.3 0.02 2.08 2.08 

60 10 0.91 67.4 0.01 2.08 2.07 

61 10 0.91 33.6 0.01 2.07 2.07 
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Table shows the results of the PIPEFLOW analysis.  It is important to highlight the pipes 

number 24 and 51, which are the last pipes on the right and left side respectively.  The required 

flow of 34 LPM at 196.2 kPa was met.  Table 13 illustrates a summary of requirement vs. 

estimated delivery based on analysis.   

Table 13. Required atomizer airflow at pressure vs. estimated air delivery sub-system airflow at 

pressure 

 

 

 

The desired air delivery of ADSS design, occurred at a pressure regulator setting of 220.6 

kPa (32 psi).  This pressure was used as the initial setting for system operation during the testing 

phase. 

The design of the FBCS installed in the poultry is illustrated in Figure 21, with the 

exception of the compressor.  The compressor purchased for the test had a vertical reservoir 

configuration, rather than the horizontal configuration shown in the design.  This change in 

reservoir configuration had no effect on the FBCS performance.  Figure 22 shows the 

compressor as installed during testing. Two of the proposed FBCS were installed in the poultry 

house 4 and testing performed during July 17 through August 28, 2015.  Test results are 

presented in Chapter 4. 

 Pressure 

(kPa) 

Air Flow 

(LPM) 

Required air delivery to the FB 

atomizer per Table 7 Case 5 

196.2 34 

Estimated air delivery of ADSS Design, 

at the FB  atomizer 

206.4 34 
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Figure 21. Proposed FBCS design 

 

 
 

Figure 22. FBCS compressor with vertical air reservoir configuration as installed at poultry  

     house 
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Chapter 4: Experimental Results and Discussion 

This chapter presents the quantitative results to address the two research questions: 

a. Can a Flow Blurring atomization system achieve the necessary cooling and humidity 

control in a poultry house, and reduce the water consumption during this process? 

b. Can this system facilitates the growth of protein in locations where water is a prime 

resource? 

Research question 1 is very important since, for any system to be viable, cooling and 

humidity control are required.  Systems must be capable of providing the required cooling 

characteristics for a successful poultry growth cycle.  Figure 23 illustrates the measured average 

dry-bulb temperature through the 42 day growth process.  As delineated by the plotted linear 

trend line, dry-bulb temperature decreases as the growth cycle progresses.  This temperature drop 

is a consequence of the increase in mechanical ventilation that removes heat from the house, in 

addition to the removal of heat by the evaporative cooling system. The average dry-bulb 

temperature for house number 4 (house modified with the FB cooling system), was at or below 

the house number 3 (house with Cool-Pads) as illustrated in Figure 23.  It is essential to note that 

the dry-bulb temperature of both houses was above the ideal temperature (temperature set point) 

documented in Table 6 of section 3.1.1.  This reflects the importance of air velocity within the 

house, which created a wind chill factor over the poultry.  This effect brings the effective poultry 

temperature closer to the desired ideal temperature.   
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Figure 23. Average dry-bulb temperature of house 3 and house 4 

 

A second key element of research question 1 is the humidity level within the houses.  The 

humidity level of house 4 (H4) was maintained below house 3 (H3) from day 1 to day 33, as 

illustrated in Figure 24.  Inflexion points are evident for both humidity curves at day number 33, 

where the humidity level reversed in both houses.  Inquiry of this specific characteristic, revealed 

that the farm manager noticed the poultry panting more frequently than normal in his experience.  

On this day, the manager activated the Cool Pad system in H4.  This event may potentially 

explain the increased humidity in H4. 
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Figure 24. Daily average humidity levels for houses 3 and 4 

 

As part of this study, the humidity of houses 1 (H1) and 2 (H2) as illustrated in Figure 10, 

was plotted in conjunction with data from H3 and H4.  Although these houses were not the main 

focus of this study, they have the same Cool Pad system as in H3 and H4, and data is always 

collected for all four houses during the growth cycle.  Figure 25 illustrates the humidity for all 

four houses.  Of note, H1, H2 and H4 follows a similar trend.  However, the humidity of H3 

drops, even though all four houses operate under the same outdoor dry-bulb and wet-bulb 

conditions.  Particularly relevant is the fact that in Figure 23, H3 and H4 have very similar 

indoor temperature, indicating an evaporative cooling process must be in place.  One possible 

explanation of the sudden drop in humidity maybe a malfunction of the humidity sensor(s) in H3. 
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Figure 25. Daily average humidity levels for houses 1, 2, 3 and 4 

 

Figure 26 illustrates the relative humidity for all four houses during the growth cycle 

period from July 31st to September 10th of 2014.  As observed, the relative humidity of all houses 

follows a similar pattern.  The humidity is expected to increase as a function of the growth cycle, 

by means of biological byproducts and moisture added via the evaporative cooling system.  Both 

humidity sources increases as the poultry increases in weight as part of the cycle.  This finding 

may provide some indication as to the anticipated tendency of the humidity, which counters that 

of H3. 

It is important to note that the FBCS was under-sized from the start of the testing, due to 

the limited electrical installation (60 amps max.).  This may have influenced a premature 

decision to switch from the FBCS to the Cool Pad system in H4.  Although the FBCS was 

performing well under the imposed conditions, this was still an actual field test (i.e. actual 

business) and priorities changed instantly to ensure the well-being of the birds. 
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Figure 26. Relative humidity data collected for H1, H2 H3 and H4 between July 31 and  

        September 10, 2014 

 

 
Figure 27. Average daily outdoor wet-bulb temperature and average indoor dry-bulb temperature  

for houses 3 and 4 
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The data shown in Figure 27 illustrates the dependency of the evaporative cooling 

process performance on the outdoor wet-bulb temperature.  The indoor dry-bulb temperature 

tracks with the trends of the outdoor wet-bulb temperature.  As stated in Section 2.2, the 

evaporative cooling proceeds until the dry-bulb temperature matches the outdoor wet-bulb 

temperature, when the air reaches complete saturation (i.e. 100% relative humidity).  Although 

there is room to drop the temperature even further, this is not desired, since poultry releases a 

large portion of their body heat through the panting process as described in Section 2.1.2.  This is 

the reason why controlling temperature and humidity is essential to the process. 

 
Figure 28. Evaporative cooling effectiveness of (a) H3, (b) H4. 
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(b) 

Figure 28 (Continued) 

 

The evaporative cooling effectiveness described in Section 2.2 is another factor to be 

used to compare the performance of the existing Cool-Pad and the proposed Flow Blurring 

cooling systems.  Figures 28(a) and (b) illustrate the cooling effectiveness of H3 and H4 

respectively.  It is noteworthy that the effectiveness between both systems is comparable 

between days 1 through 15.  This is due to the fact that initially the poultry can be cooled via 

mechanical ventilation.  However, between day 15 and 33, the effectiveness of H4 is higher than 

H3 by an average of 4.1%.  After day 33, the effectiveness of each house is again very similar, 

due the event where the Cool-Pad system was brought on line as a safety precaution. 

Research question number 2, investigated whether this system facilitates the growth of 

protein in locations where water is a prime resource.  As introduced in Chapter 1, protein 

production is increasing in developing countries throughout the world.  This increase results in 

higher demand for water, the most important natural resource to sustain life.  Therefore, any 
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reduction of water consumption, while increasing protein production will be a significant benefit, 

especially in countries where water is scarce (e.g. Middle East, Africa, and parts of Asia).  Figure 

29 shows the consumption of water in H3 and H4. A reduction in water consumption of 13,368 

gallons was recorded between days 1 to 42, between H3 and H4.  Approximately 78% (10443 

gallons) of the water usage reduction occurred during days 15 thru 3, when the FBCS was in 

operation.  This is a significant amount of water when considering that in 2012 there were about 

233,770 poultry houses in the United States alone [51].  Assuming each farm/cooling system can 

run between the months of May through September (i.e., 5 months), and the production cycles 

are approximately every 52 days (42 days production and 10 for preparation between cycles), the 

system could run for 2.88 cycles annually.  This means the U.S system alone can save over 6.7 

billion gallon of water per year (2.88 cycles/year*233,770 farms*10,000 gallon/cycle).  This 

amount of water is equivalent to the water required to fill 10,200 Olympic size pools.   

Reposing the initial questions, can a Flow Blurring Cooling System facilitate the growth 

of protein in locations where water is a prime resource?  Based on the facts presented, the answer 

is yes.  Even if water is not scarce, we must consider any measures to reduce this valuable 

natural resource. 
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Figure 29. Consumption of water between FBCS and cool-pad systems 

 

Another characteristic of the proposed FBCS is power consumption.  This is crucial since 

the electrical installation for these operations (i.e. poultry houses) is around 60 amps, and limits 

the amount of retrofit equipment that can be added.  Figure 30 illustrates the daily average power 

consumption of H3 and H4 during the growth cycle.  In this instance, power consumption is 

similar between days 1 through 15 for both houses, but increases for H4 after day 15.  This is in 

conjunction with the required need for compressed air for the FB atomizers.  Although it is 

evident more power is required for this process, energy can be obtained from many other sources 

like, Aeolic and/or Solar energy.  This presents a real opportunity, given the roof area available 

for solar panels installation.  In most developing countries, lack of water is more critical than 

power availability, which can be easily acquired from the sun.  Therefore, based on the data 

presented in Chapter 4, it is appropriate to consider the Flow Blurring cooling system as a 

viable solution to Research Question 2.  
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Figure 30. Daily average power consumption of H3 and H4 
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Chapter 5: Conclusions and Future Work 

5.1. Conclusions  

In this dissertation, an evaporative Flow Blurring cooling system (FBCS) was designed, 

manufactured, installed, and experimentally investigated.  The FBCS was designed to match the 

cooling load required for a poultry house located near Fayetteville, AR., during the summer time 

(July-August).  Specifications were based on the existing building construction, real production 

occupancy and relevant environmental requirements.  One key feature of the system design 

included the development, manufacturing, and testing of a custom Flow Blurring atomizer. 

Additionally, a control system (i.e. controls logic) was developed to run the sequence of actions 

required during the operation (on/off cycles) of the system.  Experimental results of from the 

FBCS were compared to an existing Cool-Pad evaporative system, the current standard in the 

poultry industry. 

Implementation of this new evaporative cooling system resulted in a reduction of 

approximately 78% in water consumption (10,443 gallons) used for cooling, while the FBCS and 

Cool-Pad systems were concurrently in operation  The reduction in use of this irreplaceable 

natural resource occurred while the FBCS maintained comparable and/or enhanced 

environmental conditions (i.e. temperature and humidity).  These results clearly demonstrate the 

validity for the application of a FBCS in the poultry agricultural field. 

A correlation was established between developing countries with population and 

economic growth, and the increasing demand for animal protein.  In addition, poultry meat (e.g. 

chickens, turkeys, and others) has been identified as having a relatively lower water footprint, 
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when compared to beef or pork.  Therefore, the addition of a FBCS to the supply chain of poultry 

protein can be a significant improvement in geographical regions where water resources are 

scare, as well as in countries where water is abundant.  Life as we know it can exist without oil, 

but not without water. 

5.2. Future Work 

Recommended future work, based on the experimental investigation and results obtained 

in this research include: 

a. The experimental setup should use a poultry house with enough electrical capacity to 

install the full FBCS (four modules).  This shall allow the farm manager to operate the 

system with confidence for the full 42 days growth cycle. 

b. Cooling effectiveness should be evaluated vs. atomizers elevation in the house (with 

respect from the litter).  A higher elevation may increase the contact time with the 

incoming air and in terms the evaporation process. 

c. Power consumption can be a concern to the farmer, as it increases the operation’s 

recurrent costs.  However, the rural location of these facilities, permits the addition of 

renewable energy sources (e.g. Aeolic, biodiesel, solar, etc.) that can allow the 

installation of a poultry house in remote locations where the power infrastructure is 

limited or not available.  A study of the lifecycle water consumption between current vs. 

renewable energy source may provide a more comprehensive water footprint.   

d. The atomization knowledge acquired (in terms of droplet size control) creates the 

following question: Can we control the droplet size to use the Flow Blurring cooling 

system for an indirect evaporative cooling?  This would be a significant improvement, since 

the temperature of the air can be reduced, without an increase in humidity. 
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Appendix A: Detailed Drawings 

 
Figure A. FB atomizer body 2D detailed drawing 
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Figure B. FB atomizer insert 2D detailed drawing 
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Appendix B: Copyright Clearance 

Figure 1 referenced in Chapter 1 was published in Livestock's long shadow: 

environmental issues and options, 2006.  The authorization of reproduction of author’s own 

manuscript is granted by terms of use as stated in paragraph number two. From the webpage: 

http://www.fao.org/docrep/010/a0701e/a0701e00.htm. 
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